Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
research_details [2019/03/26 12:49]
jthaler [Precision Jet Physics]
research_details [2020/05/14 18:33] (current)
jthaler [Quantum Computation for Colliders]
Line 18: Line 18:
 Machine learning has impacted many scientific fields, and particle physics is no exception. ​ In my research, I aim to enhance the search for new phenomena at colliders by merging the performance of deep learning algorithms with the robustness of "deep thinking"​ approaches. Machine learning has impacted many scientific fields, and particle physics is no exception. ​ In my research, I aim to enhance the search for new phenomena at colliders by merging the performance of deep learning algorithms with the robustness of "deep thinking"​ approaches.
  
-  * **The Metric Space of Collider Events**. \\ Patrick T. Komiske, Eric M. Metodiev, and Jesse Thaler. ​ \\ [[https://​arxiv.org/​abs/​1902.02346|arXiv:​1902.02346]]. ​   +  ​* **A Robust Measure of Event Isotropy at Colliders**. \\ Cari Cesarotti and Jesse Thaler. \\ [[https://​arxiv.org/​abs/​2004.06125|arXiv:​2004.06125]]. 
 + 
 +  * **The Hidden Geometry of Particle Collisions**. \\ Patrick T. Komiske, Eric M. Metodiev, and Jesse Thaler. \\ [[https://​arxiv.org/​abs/​2004.04159|arXiv:​2004.04159]]. 
 + 
 +  * **OmniFold: A Method to Simultaneously Unfold All Observables**. \\ Anders Andreassen, Patrick T. Komiske, Eric M. Metodiev, Benjamin Nachman, and Jesse Thaler. \\ [[http://​dx.doi.org/​10.1103/​PhysRevLett.124.182001|Phys. Rev. Lett. 124:182001 (2020)]], [[https://​arxiv.org/​abs/​1911.09107|arXiv:​1911.09107]]. 
 + 
 +  ​* **The Metric Space of Collider Events**. \\ Patrick T. Komiske, Eric M. Metodiev, and Jesse Thaler. ​ \\ [[http://​dx.doi.org/​10.1103/​PhysRevLett.123.041801|Phys. Rev. Lett. 123:041801 (2019)]] ([[https://​physics.aps.org/​articles/​v12/​85|Viewpoint]]), ​[[https://​arxiv.org/​abs/​1902.02346|arXiv:​1902.02346]].
  
   * :!: **Energy Flow Networks: Deep Sets for Particle Jets**. \\ Patrick T. Komiske, Eric M. Metodiev, and Jesse Thaler. ​ \\  [[https://​doi.org/​10.1007/​JHEP01(2019)121|JHEP 1901:121 (2019)]], [[https://​arxiv.org/​abs/​1810.05165|arXiv:​1810.05165]].   * :!: **Energy Flow Networks: Deep Sets for Particle Jets**. \\ Patrick T. Komiske, Eric M. Metodiev, and Jesse Thaler. ​ \\  [[https://​doi.org/​10.1007/​JHEP01(2019)121|JHEP 1901:121 (2019)]], [[https://​arxiv.org/​abs/​1810.05165|arXiv:​1810.05165]].
Line 25: Line 31:
  
   * **Classification Without Labels: Learning from Mixed Samples in High Energy Physics**. \\  Eric M. Metodiev, Benjamin Nachman, and Jesse Thaler. \\ [[https://​doi.org/​10.1007/​JHEP10(2017)174|JHEP 1710:174 (2017)]], [[https://​arxiv.org/​abs/​1708.02949|arXiv:​1708.02949]].   * **Classification Without Labels: Learning from Mixed Samples in High Energy Physics**. \\  Eric M. Metodiev, Benjamin Nachman, and Jesse Thaler. \\ [[https://​doi.org/​10.1007/​JHEP10(2017)174|JHEP 1710:174 (2017)]], [[https://​arxiv.org/​abs/​1708.02949|arXiv:​1708.02949]].
 +
 +
 +===== Quantum Computation for Colliders =====
 +
 +  * **Quantum Algorithms for Jet Clustering**. ​ \\ Annie Y. Wei, Preksha Naik, Aram W. Harrow, and Jesse Thaler. \\ [[http://​dx.doi.org/​10.1103/​PhysRevD.101.094015|Phys. Rev. D101:094015 (2020)]], [[https://​arxiv.org/​abs/​1908.08949|arXiv:​1908.08949]].
  
  
Line 30: Line 41:
  
 Jets are collimated sprays of particles arising from the fragmentation of short-distance quarks and gluons. ​ In traditional collider studies, these jets are reconstructed using jet algorithms, which assign clusters of particles to jet four-vectors. ​ I have shown that the substructure of jets can provide valuable information about the underlying short-distance physics. ​ In extreme cases, physics that would otherwise be unobservable using traditional jet algorithms can be made prominent through jet substructure techniques. Jets are collimated sprays of particles arising from the fragmentation of short-distance quarks and gluons. ​ In traditional collider studies, these jets are reconstructed using jet algorithms, which assign clusters of particles to jet four-vectors. ​ I have shown that the substructure of jets can provide valuable information about the underlying short-distance physics. ​ In extreme cases, physics that would otherwise be unobservable using traditional jet algorithms can be made prominent through jet substructure techniques.
 +
 +  * **Cutting Multiparticle Correlators Down to Size**. \\ Patrick T. Komiske, Eric M. Metodiev, and Jesse Thaler. \\ [[http://​dx.doi.org/​10.1103/​PhysRevD.101.036019|Phys. Rev. D101:036019 (2020)]], [[https://​arxiv.org/​abs/​1911.04491|arXiv:​1911.04491]].
  
   * **An Operational Definition of Quark and Gluon Jets**. \\ Patrick T. Komiske, Eric M. Metodiev, and Jesse Thaler. \\ [[https://​doi.org/​10.1007/​JHEP11(2018)059|JHEP 1811:059 (2018)]], [[https://​arxiv.org/​abs/​1809.01140|arXiv:​1809.01140]].   * **An Operational Definition of Quark and Gluon Jets**. \\ Patrick T. Komiske, Eric M. Metodiev, and Jesse Thaler. \\ [[https://​doi.org/​10.1007/​JHEP11(2018)059|JHEP 1811:059 (2018)]], [[https://​arxiv.org/​abs/​1809.01140|arXiv:​1809.01140]].
Line 110: Line 123:
 ===== Probing the Quark/Gluon Plasma ===== ===== Probing the Quark/Gluon Plasma =====
  
-  * **Sorting Out Quenched Jets**.\\ ​ Jasmine Brewer, José Guilherme Milhano, and Jesse Thaler. \\ [[https://​arxiv.org/​abs/​1812.05111|arXiv:​1812.05111]]. +  * **Sorting Out Quenched Jets**.\\ ​ Jasmine Brewer, José Guilherme Milhano, and Jesse Thaler. \\ [[https://​doi.org/​10.1103/​PhysRevLett.122.222301|Phys. Rev. Lett. 122:222301 (2019)]], ​[[https://​arxiv.org/​abs/​1812.05111|arXiv:​1812.05111]].
  
 ====== Open Data Studies ====== ====== Open Data Studies ======
Line 119: Line 131:
 ===== 2011 CMS Open Data ==== ===== 2011 CMS Open Data ====
  
-  * **Searching in CMS Open Data for Dimuon Resonances with Substantial Transverse Momentum**. \\ Cari Cesarotti, Yotam Soreq, Matthew J. Strassler, Jesse Thaler, and Wei Xue. \\ [[https://​arxiv.org/​abs/​1902.04222|arXiv:​1902.04222]].+  ​* **Exploring the Space of Jets with CMS Open Data**. \\ Patrick T. Komiske, Radha Mastandrea, Eric M. Metodiev, Preksha Naik, and Jesse Thaler. \\ [[http://​dx.doi.org/​10.1103/​PhysRevD.101.034009|Phys. Rev. D101:034009 (2020)]], [[https://​arxiv.org/​abs/​1908.08542|arXiv:​1908.08542]]. 
 + 
 +  ​* **Searching in CMS Open Data for Dimuon Resonances with Substantial Transverse Momentum**. \\ Cari Cesarotti, Yotam Soreq, Matthew J. Strassler, Jesse Thaler, and Wei Xue. \\ [[http://​dx.doi.org/​10.1103/​PhysRevD.100.015021|Phys. Rev. D100:015021 (2019)]], ​[[https://​arxiv.org/​abs/​1902.04222|arXiv:​1902.04222]].
  
 ===== 2010 CMS Open Data ==== ===== 2010 CMS Open Data ====
Line 137: Line 151:
 I work on new ways to probe ultralight axion dark matter (not to be confused with the axion portal below), which requires very different detection techniques than heavy-particle dark matter. ​ I work on new ways to probe ultralight axion dark matter (not to be confused with the axion portal below), which requires very different detection techniques than heavy-particle dark matter. ​
  
-  * **Searching for Axion Dark Matter with Birefringent Cavities**. \\ Hongwan Liu, Brodi D. Elwood, Matthew Evans, and Jesse Thaler. ​ \\ [[https://​arxiv.org/​abs/​1809.01656|arXiv:​1809.01656]].+  * **Searching for Axion Dark Matter with Birefringent Cavities**. \\ Hongwan Liu, Brodi D. Elwood, Matthew Evans, and Jesse Thaler. ​ \\ [[https://​doi.org/​10.1103/​PhysRevD.100.023548| Phys. Rev. D100:023548 (2019)]], ​[[https://​arxiv.org/​abs/​1809.01656|arXiv:​1809.01656]].
  
   * :!: **Broadband and Resonant Approaches to Axion Dark Matter Detection**. \\ Yonatan Kahn, Benjamin R. Safdi, and Jesse Thaler. \\ [[http://​dx.doi.org/​10.1103/​PhysRevLett.117.141801|Phys. Rev. Lett. 117:141801 (2016)]], [[http://​arxiv.org/​abs/​1602.01086|arXiv:​1602.01086]].   * :!: **Broadband and Resonant Approaches to Axion Dark Matter Detection**. \\ Yonatan Kahn, Benjamin R. Safdi, and Jesse Thaler. \\ [[http://​dx.doi.org/​10.1103/​PhysRevLett.117.141801|Phys. Rev. Lett. 117:141801 (2016)]], [[http://​arxiv.org/​abs/​1602.01086|arXiv:​1602.01086]].
Line 161: Line 175:
 Dark forces are part of a large paradigm of dark portals connecting visible and hidden sectors of nature. ​ I developed the idea of an "axion portal",​ where dark matter and ordinary matter interact via a light pseudoscalar particle. ​ While dark matter itself is quite difficult to probe in these scenarios, the axion leaves distinction signatures in collider experiments. ​ Axion-like states and stable dark matter arise quite generically in supersymmetric hidden sectors, which can have an interesting effect on the measured cosmic ray spectrum. Dark forces are part of a large paradigm of dark portals connecting visible and hidden sectors of nature. ​ I developed the idea of an "axion portal",​ where dark matter and ordinary matter interact via a light pseudoscalar particle. ​ While dark matter itself is quite difficult to probe in these scenarios, the axion leaves distinction signatures in collider experiments. ​ Axion-like states and stable dark matter arise quite generically in supersymmetric hidden sectors, which can have an interesting effect on the measured cosmic ray spectrum.
  
-  * **Dark ​matter ​from dynamical ​SUSY breaking**.\\ JiJi Fan, Jesse Thaler, and Lian-Tao Wang. \\ [[http://​dx.doi.org/​10.1007/​JHEP06(2010)045|JHEP 1006:045 (2010)]], [[http://​www.arxiv.org/​abs/​1004.0008|arXiv:​1004.0008]].+  * **Dark ​Matter ​from Dynamical ​SUSY Breaking**.\\ JiJi Fan, Jesse Thaler, and Lian-Tao Wang. \\ [[http://​dx.doi.org/​10.1007/​JHEP06(2010)045|JHEP 1006:045 (2010)]], [[http://​www.arxiv.org/​abs/​1004.0008|arXiv:​1004.0008]].
  
   * **Cosmic Signals from the Hidden Sector.**\\ Jeremy Mardon, Yasunori Nomura, and Jesse Thaler.\\ [[http://​link.aps.org/​abstract/​PRD/​v80/​e035013|Phys. Rev. D80:035013 (2009)]], [[http://​www.arxiv.org/​abs/​0905.3749|arXiv:​0905.3749]].   * **Cosmic Signals from the Hidden Sector.**\\ Jeremy Mardon, Yasunori Nomura, and Jesse Thaler.\\ [[http://​link.aps.org/​abstract/​PRD/​v80/​e035013|Phys. Rev. D80:035013 (2009)]], [[http://​www.arxiv.org/​abs/​0905.3749|arXiv:​0905.3749]].
Line 191: Line 205:
 ===== Adventures in Superspace ===== ===== Adventures in Superspace =====
  
-  * **Navigating Collinear Superspace**. \\  Timothy Cohen, Gilly Elor, Andrew J. Larkoski, and Jesse Thaler. \\  [[https://​arxiv.org/​abs/​1810.11032|arXiv:​1810.11032]].+  ​* **Circumnavigating Collinear Superspace**. \\ Timothy Cohen, Gilly Elor, Andrew J. Larkoski, and Jesse Thaler. \\ [[http://​dx.doi.org/​10.1007/​JHEP02(2020)156|JHEP 2002:156 (2020)]], [[https://​arxiv.org/​abs/​1909.00009|arXiv:​1909.00009]]. 
 + 
 +  ​* **Navigating Collinear Superspace**. \\  Timothy Cohen, Gilly Elor, Andrew J. Larkoski, and Jesse Thaler. \\  ​[[https://​doi.org/​10.1007/​JHEP02(2020)146|JHEP 2002:146 (2020)]], ​[[https://​arxiv.org/​abs/​1810.11032|arXiv:​1810.11032]].
  
   * **TASI 2012: Super-Tricks for Superspace**. \\ Daniele Bertolini, Jesse Thaler, and Zachary Thomas. \\ [[http://​www.arxiv.org/​abs/​1302.6229|arXiv:​1302.6229]].   * **TASI 2012: Super-Tricks for Superspace**. \\ Daniele Bertolini, Jesse Thaler, and Zachary Thomas. \\ [[http://​www.arxiv.org/​abs/​1302.6229|arXiv:​1302.6229]].
research_details.1553604542.txt.gz · Last modified: 2019/03/26 12:49 by jthaler